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Abstract: Harmful algal blooms (HABs), events that kill fish, impact human health in multiple
ways, and contaminate water supplies, have increased in frequency, magnitude, and impacts in
numerous marine and freshwaters around the world. Blooms of the toxic dinoflagellate Karenia brevis
have resulted in thousands of tons of dead fish, deaths to many other marine organisms, numerous
respiratory-related hospitalizations, and tens to hundreds of millions of dollars in economic damage
along the West Florida coast in recent years. Four types of machine learning algorithms, Support
Vector Machine (SVM), Relevance Vector Machine (RVM), Naïve Bayes classifier (NB), and Artificial
Neural Network (ANN), were developed and compared in their ability to predict these blooms.
Comparing the 21 year monitoring dataset of K. brevis abundance, RVM and NB were found to
have better skills in bloom prediction than the other two approaches. The importance of upwelling-
favorable northerly winds in increasing K. brevis probability, and of onshore westerly winds in
preventing blooms from dispersing offshore, were quantified using RVM, and all models were used
to explore the importance of large river flows and the nutrients they supply in regulating blooms.
These models provide new tools for management of these devastating algal blooms.

Keywords: harmful algal bloom; Karenia brevis; machine learning; Support Vector Machine; Relevance
Vector Machine; Naïve Bayes classifier; Artificial Neural Network

1. Introduction

The incidence of harmful algal blooms (HABs) has increased globally. HABs are now
occurring more frequently, in new and different places, and often last longer, having a
wide range of environmental and toxic impacts and in numerous fresh, estuarine, and
marine waters [1–3]. Both nutrient pollution and climate change are now recognized to
play important roles in this expansion [4–8]. Nutrient runoff is increasing with increases in
human population and associated changes in diets and the food supply chain, and rising
temperatures and climate changes are leading to changes in precipitation patterns and
increased intensity or frequency of storm events, that, in turn, alter coastal runoff and
physical processes, such as upwelling and stratification [8]. From local to global scales,
environmental conditions supporting HABs are changing, leading to increasing challenges
for understanding—and modeling—the habitats that support and stimulate them.

Blooms of the toxic dinoflagellate Karenia brevis occur almost annually on the West
Florida Shelf (WFS), and historical accounts show that they have occurred since at least the
16th century [9]. However, recent analyses suggest that bloom events have increased 15-fold
from the 1950s to the 1990s, although quantifying patterns and trends is complicated by the
inconsistency of data collection over this period [10]. During 2017–2019, southwest Florida
experienced an unusually prolonged (18 months) K. brevis bloom. At its maximum, this
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bloom covered a region with a coastline of more than 250 km, encompassing recreational
beaches and numerous commercial and recreational shellfish beds, causing both ecological
and economic harm (Figure 1) [11–13].
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(2018), and Tropical Storm Gordon (2018), are suspected of contributing to the severity of 

Figure 1. Map of the West Florida Shelf (WFS) showing the region in red where Karenia brevis blooms
are most frequently observed, and the major rivers that discharge onto the WFS and for which
nutrient (total nitrogen and total phosphorus) data are available. Red dots mark the United States
Geological Survey (USGS) stations and green dots mark the National Data Buoy Center stations
(Station 42,039, 28.787N 86.007W; Cedar Key, 29.12N 83.02 W and Fort Myers 26.65N. 81.88W) from
which wind and temperature data were acquired.

Although K. brevis is typically thought of as a coastal bloom species, blooms are
generally initiated offshore and then transported to coastal waters where they flourish
and persist for months in nutrient-rich waters [9]. Blooms of K. brevis usually begin in
the late summer or early fall, and can persist until the late fall or winter [14]. Upwelling
transports K. brevis cells to the coast [15–17], but strong upwelling over the shelf break
may actually suppress K. brevis blooms or favor competing taxa such as diatoms [18,19].
It is thought that northerly wind generates the coastal upwelling that transports K. brevis
from offshore regions to coastal waters, producing favorable conditions for growth. Once
K. brevis reaches coastal waters, the westerly wind keeps populations near the coast and
prevents them from dispersing offshore. In the current study, the effects of winds were
further explored herein.

The nutrient sources, pathways, and processes supporting and maintaining K. brevis
blooms not only include upwelling, but also riverine nutrient inputs that bring wastewater
effluent and agricultural runoff [14]. Other nutrient sources include benthic nutrient fluxes,
atmospheric deposition, nutrients released by other phytoplankton and decaying fish from
fish deaths, submarine groundwater discharge, and mixotrophic grazing—suggesting com-
plex environmental interactions of nutrients with bloom occurrence and strength [14,20–25].
Nutrient relationships and riverine flow were also tested herein.

The massive bloom of 2017–2019, and another recent, large-scale bloom, observed
in 2005, were likely propelled by unusual events. Hu et al. [20] suggested that nutrient
inputs resulting from a series of hurricanes in southwest Florida in 2004 were linked with
the severity of the 2005 bloom. Hurricanes can accelerate the yield of new sources of land-
based nutrients from high riverine flow. Similarly, Hurricanes Irma (2017) and Michael
(2018), and Tropical Storm Gordon (2018), are suspected of contributing to the severity of
the 2017–2019 K. brevis bloom [11]. Moreover, long periods of wet weather through 2018,
combined with increased discharges from Lake Okeechobee and the Caloosahatchee River,
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added nutrients to coastal waters, sustaining large K. brevis blooms through early 2019. In
late 2020, another hurricane, Eta, appears to have played a similar role in helping to sustain
a very recent large bloom that has lasted through the winter and spring of 2020–2021.

There is a strong need to advance predictions of K. brevis, and other HABs more
generally, to protect human health, fisheries, and economies, but there are many challenges
in modeling discrete HAB species [26–31]. Several types of models have been developed
and are currently in operation for predicting K. brevis blooms [9,32–34]. Weisberg et al. [34]
developed a high-resolution coastal ocean circulation model to track the movement of
water particles associated with K. brevis populations. An operational forecasting modeling
system, maintained by the National Oceanic and Atmospheric Administration, provides
3–5 day outlooks of K. brevis blooms, using satellite remote sensing of chlorophyll a, in
situ sampling of K. brevis cell density, and wind buoy data [32,33]. The main goal of these
forecasts is to inform managers and the public in coastal areas where public health may
be compromised [33]. Walsh et al. [35], in addition to Weisberg and He [15], used a three-
dimensional (3D) biophysical-coupled model to hindcast bloom initiation and explore
the impact of individual forcing functions [35–38]. However, these models utilize many
biochemical and physiological parameters, some of which have not been well characterized
either in situ or in the laboratory. Furthermore, these 3D-coupled biophysical models are
computationally expensive.

Due to their powerful nonlinear modeling capability, machine learning methods
are beginning to be used to predict HAB events, including K. brevis events [39]. An
Artificial Neural Network (ANN) model was used to predict algal blooms in Hong Kong
coastal waters [40] and to predict outbreaks of the dinoflagellate Dinophysis acuminata
in southern Spain [41]. More recently, a Neural Network (NN) approach was used to
predict the presence/absence and abundance of the dinoflagellate Karlodinium and the
diatom Pseudo-nitzschia in Alfacs Bay in the northwest Mediterranean Sea [42], and Support
Vector Machine (SVM) models were used to predict blooms in freshwater reservoirs [43].
Shen et al. [44] used SVM models to simulate algal blooms in the tidal freshwater of James
River in response to riverine nutrient loading.

Machine learning approaches have also been used in predicting HABs in the Gulf
of Mexico, but with different objectives. Liu and Weisberg [16] used such approaches
to demonstrate the role of deep-ocean forcing on WFS in the major bloom occurrences.
Weisberg et al. [18] reported that the position of the Loop Current can affect blooms. When
the Loop Current is in its southern position, it creates an upwelling of deep nutrients and
fosters a diatom bloom that may outcompete any nascent K. brevis blooms. Liu et al. [19]
used Self-Organizing Maps to classify spatial patterns of the sea surface height anomalies
associated with the Loop Current and found no bloom developed when the Loop Current
was in the southern position. That work focused exclusively on the potential effects of
the Loop Current on K. brevis blooms and did not consider other factors such as river
flows and riverine nutrient loading. Gokaraju et al. [45] proposed a machine learning
based spatiotemporal data mining approach to detect HABs from SeaWiFS (Sea-viewing
Wide Field-of-view) and MODIS (Moderate Resolution Imaging Spectroradiometer)-Aqua
space-born sensor measurements. Recently, Hill et al. [46] used satellite remote sensing
of chlorophyll a from 2003 to 2018, sea surface temperature, and bathymetry as inputs to
a convolutional NN (designed for spatial data) to detect the presence of K. brevis blooms
on WFS, achieving a maximum detection accuracy of 91%. Such approaches have yet to
be used to assess the effects of winds, river flows, and river nutrient discharge on the
likelihood of K. brevis blooms.

The State of Florida, along with numerous other states and government entities around
the world, has established, or is working to establish, nutrient reduction targets to mitigate
water quality problems in their water bodies. Continued monitoring and assessment
methods will be essential, and improved approaches for establishing criteria for additional
waters and to manage water quality across greater regions will continue to be required.
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In this research, four machine learning algorithms were used to predict K. brevis on
the WFS over a 21 year period. Specifically, the performance of these different machine
learning approaches was assessed with regard to forecasting the probability of K. brevis
blooms with changing wind, discharge from different rivers, differing nutrient loads, and
sea surface height (as a proxy for temperature and upwelling strength). New modeling
approaches will provide new tools for defining scientifically defensible protective nutrient
loads in future re-evaluations of Florida’s water quality criteria and in predicting blooms
to protect human health and commercial interests.

2. Materials and Methods
2.1. The Dataset and Preparation of Explanatory and Dependent Variables

To develop the machine learning models, in situ data of K. brevis cell densities
(cells L−1) over a 21 year period (1998–2018) on the WFS were obtained from the database
available from the Florida Fish and Wildlife Conservation Commission (FFWRCC) [47]. All
data represent near-surface cell counts taken using light microscopy; samples are collected
by various state and county agencies, private research institutions, and university re-
searchers and routinely reported to FFWRCC. These data represent water samples collected
during regular monitoring along the Florida coast and during suspected or confirmed
K. brevis events. Although data are available for earlier decades, since 1998 more consistent
inshore and offshore stations have been sampled, and thus this analysis is limited to data
post-1998.

The data used herein were limited to water samples collected between latitudes of
25.85 degrees north (Marco Island) and 29.14 degrees north (Mouth of Suwanee River) and
at most 9 km from the coast because most of the K. brevis blooms occurred within this area.
Moreover, setting a fixed area for the data analysis ensured data consistency [48]. Because
the K. brevis measurements were largely collected if and when blooms were documented,
and not made on a continuous or regular basis, the database has an undersampling
of K. brevis under low cell density conditions. To overcome the spatial and temporal
inconsistency in the data, the 5 highest cell counts across the fixed area were averaged for
each week to produce a weekly mean, following the approach used in previous studies [19].
These cell numbers were discretized and weekly averages were combined into a binary
variable, with mean cell densities greater than 105 cells L−1 counting as K. brevis events,
consistent with the commonly used threshold for K. brevis blooms.

Streamflow data were obtained from United States Geological Survey (USGS) stations
in the major rivers that discharge onto the WFS [49] (Figure 1). The USGS stations used
included: Tampa Bay (USGS 2306647), Peace River (USGS 2296750), Lake Okeechobee
(USGS 2274325), Suwanee River (USGS 2323500), Withlacoochee River (USGS 2319000),
Hillsborough River (USGS 2303330), Little Manatee River (USGS 2300500), Myakka River
(USGS 2298830), and Caloosahatchee Canal (USGS 2292000). Nutrient data from the
major rivers, including the total nitrogen (TN) and total phosphorus (TP) concentrations,
were downloaded from the Tampa Bay and Charlotte Harbor Water Atlas (University
of South Florida Water Institute) [50]. No nutrient concentration data were available for
the Suwanee River. Weekly averaged nutrient concentrations were multiplied by weekly
averaged streamflow to estimate weekly TN and TP loads.

Hourly wind and temperature data were obtained from the National Data Buoy Center
(NDBC) stations [51] (Figure 1) across the WFS. The hourly wind speeds were used to cal-
culate weekly averages using a simple vector average. The hourly temperature was used to
calculate weekly averages. Satellite altimetry from the GLOBAL-REANALYSIS-PHY−001–
030 reanalysis product, provided by the E.U. Copernicus Marine Service Monitoring Service
(CMEMS) [52] was used to calculate the difference in sea surface height at two locations
to quantify the strength of the deep-sea coastal upwelling caused by the Loop Current,
following Maze et al. [48].

Data were aggregated into the following form; each row i = 1, . . . , 1083 of the dataset
is
{

xi
1, xi

2, xi
3, . . . , xi

33, yi
}

, where xi
1, xi

2, xi
3, . . . , xi

33 are the explanatory variables of river
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discharge, nutrient concentration, wind speed and direction, temperature, and sea surface
height difference, and yi is the dependent variable of discretized K. brevis cell densities.
Machine learning algorithms aim to map xi

1, xi
2, xi

3, . . . , xi
33 to yi. The number of HAB

events (318, based on the criteria of cell density >105 cells L−1) was less than half of
the number of events without HABs (765, cell density <105 cells L−1), resulting in an
imbalanced classification problem [53]. Machine learning algorithms for classification
predictive models are designed assuming an equal distribution of classes. Because there
are fewer examples of the minority class (non-HAB events) than the majority class (HAB
events), it becomes harder to predict the non-event periods.

Several approaches have been developed to address this issue and two different
approaches were applied herein: (1) the minority class of the training data was randomly
oversampled such that the sample size of events with and without HABs were roughly
equal in the synthetic training dataset [54]; and (2) the minority class was oversampled by
generating new synthetic data using a synthetic minority oversampling technique (SMOTE)
preprocessing algorithm [55–57].

2.2. Machine Learning Algorithms

To predict K. brevis cell density and test the strength of various explanatory variables,
the following machine learning algorithms were used: a) Support Vector Machine (SVM),
b) Relevance Vector Machine (RVM, a modification of SVM), c) Naïve Bayes (NB), and d)
Artificial NN (ANN). These approaches represent a range of machine learning algorithms
with different methodologies and varying complexity. SVM belongs to a class of algorithms
called kernel methods. RVM has an identical functional form to SVM but provides proba-
bilistic classification. NB is a family of simple probabilistic classifiers. ANN is based on a
system of connected nodes to mirror neurons in a biological brain.

2.2.1. Support Vector Machine

The SVM model is a supervised machine learning algorithm that seeks the hyperplane
that best separates two labeled classes from each other; the optimal hyperplane maximizes
the marginal distance from the nearest support vector for each class [45] (Figure 2a):

f(x) = sign(〈w, x〉+ b) (1)

where x represents the vector for the explanatory variables, 〈w, x〉+ b = 0 is the hyperplane
that separates the two classes, w is the slope of the hyperplane, b is the intercept, and f(x) is
the classifier output which takes the value of either 1 or −1. SVM seeks a solution for the
hyperplane by maximizing the width of the gap between the two data clouds, represented
by the cost function (CF, Equation (2), Figure 2a):

CF = ‖w‖2. (2)

Sometimes the SVM cannot achieve a perfect separation. The soft-margin loss formulation
allows some data points to lie within the margin of tolerance but penalizes them in the cost
function [58] as follows (Equation (3)):

Minimize CF = C ‖w‖2 +
1
N

N

∑
i=1

ξi (3)

where in the slack variables, ξi = max(0, 1− yi · (〈w, xi〉+ b)), yi is either 1 or −1, and C is
a hyperparameter which determines the trade-off between maximizing the margin width
and minimizing the associated error (Figure 2a). This new cost function is then optimized,
yielding the linear support vector expansion for the classifier (Equation (4)):

f(x) = sign(b +
N

∑
i=1

αiyi(xi − x) ) (4)
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where αi are the Lagrangian multipliers and w is rewritten as a linear combination of
the training patterns [59]. The constant b can be found with the Karush–Kuhn–Tucker
Conditions [60,61]:
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Figure 2. (a) A schematic diagram of the Support Vector Machine (SVM) classifier. The SVM model
is a supervised machine learning algorithm that seeks a hyperplane that best separates two labeled
classes from each other. The SVM maximizes the width of the gap between the two data clouds. In
some cases, not all of the data points can be fitted into the two data clouds outside the shaded gap
region. In the soft margin formulation of the SVM, points are allowed inside the gap but penalized
in the cost function. (b) A schematic diagram of the Artificial Neural Network (ANN) model. The
ANN is based on the feedforward multilayer perceptron architecture, consisting of an input layer,
one or more sets of hidden layers, and one output layer. The ANN can be turned into a classifier by
discretizing the network’s output. The basic substructure of the ANN is perceptron. For all but the
input layer, the perceptron has an input (the outputs of the previous layer). The vectors of inputs and
the neuron’s weights are multiplied by a dot product. Then, a transfer function is applied to the sum,
giving an output for the next layer of perceptrons.

The linear support vector expansion cannot be used to describe nonlinear relationships
between the explanatory and dependent variables. To describe nonlinear datasets, kernel
functions are used to map the data to higher dimensions where they exhibit linear patterns
and the linear model can be applied in that feature space [62,63]. The Gaussian radial
basis function was chosen as the kernel function because of its computational efficiency
(Equation (5)),

K
(

x, x
′
)
= exp

(
−γ‖x− x

′‖2
)

(5)

where γ is the kernel parameter controlling the sensitivity of the kernel function.
SVM has two hyperparameters that cannot be determined from optimization: C and

γ. Both were determined with a grid search method on the training data.

2.2.2. Relevance Vector Machine

The RVM model has an identical functional form to SVM but uses a Bayesian proba-
bilistic framework to estimate the parameters [64,65]. To obtain the maximum likelihood
estimate of w, and to avoid overfitting, the Bayesian approach is taken to constrain the
parameters by defining an explicit prior probability distribution over them. The prior
probability distribution is chosen to be a Gaussian distribution, and RVM introduces a
vector to enforce a preference for smoothness. Then, the posterior estimate of the unknown
parameters given the data is obtained using Bayes’ rule. Because the posterior probability
can be evaluated exactly, RVM seeks to maximize the marginal likelihood with respect to
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the hyperparameters. RVM typically uses considerably fewer basis functions than SVM.
RVM was applied herein using the radial basis function as the kernel function.

2.2.3. Naïve Bayes

The NB classifier is a simple probabilistic classifier based on the Bayes’ rule and re-
quires strong “naïve” independence between the features [66,67]. Given a new observation
x, it finds the class Ck that maximizes the conditional probability p(Ck|x) , the likelihood
of a class given the observation. Using Bayes’ theorem, the conditional probability can be
calculated as follows (Equation (6)):

p(Ck|x) =
p(Ck)p(x|Ck )

p(x)
(6)

where p(Ck) is the prior probability of observing a class Ck, p(x|Ck ) is the likelihood of
observing x given Ck, and p(x) is the probability of observing x. Assuming strong naïve
independence, the probabilistic chain rule can be used to transform the likelihood p(x|Ck )
of x into the probabilities of each of the features of x given a class (Equation (7)):

p(x|Ck ) =
N

∏
i=0

p(xi|Ck) (7)

This study used the Gaussian NB in which the Gaussian distribution (Equation (8)),

p(xi|Ck) =
1√

2πσ2
k

e
− (xi−µk)

2

2σ2
k (8)

is assumed to underlie the sample distribution. To train the NB classifier, the data were
segmented by the classes, and the mean and standard deviation of each of the features for
each of the classes were calculated, giving a probability distribution for each of the classes.

2.2.4. Artificial Neural Network

ANN is based on the feedforward multilayer perceptron architecture, consisting of
an input layer, one or more sets of hidden layers, and one output layer [68,69]. ANN can
be turned into a classifier by discretizing the network’s output. The basic substructure of
ANN is a perceptron (Figure 2b). Each perceptron has an input (the outputs of the previous
layer), a series of weights, a transfer function, and an output. A transfer function is applied
to the dot product of the inputs and weights for each perceptron, giving an output for the
next layer. The output y(l)

j for node j in layer l is as follows (Equation (9)):

y(l)
j (x) = ϕ

(
n

∑
i=1

w(l)
ji y(l−1)

i (x)

)
(9)

where x are the input variables, y(l−1)
j is the output at layer (l−1), wji are the synaptic

weights, and ϕ is the activation function.
Initially, random numbers are assigned to the synaptic weights. The weights are

adjusted with the training data. There are two main steps to the training of the ANN:
forward computation and back propagation. In forward propagation, input signals are
propagated through the network, layer by layer. In back propagation, the error for the
entire network is calculated [70]. Then, the errors are computed for each neuron, and then
the local gradients for the synaptic weights of the network are calculated. Gradient descent
is then used to adjust the synaptic weights. These steps are repeated until the error falls
below a desired threshold. Herein, two hidden layers with 20 and 10 neurons were used
in the ANN model, because rules of thumb suggest that two hidden layers are sufficient
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given the number of explanatory variables in this classification problem and that each
layer should have approximately half the number of nodes as the preceding layer [71].
Hyperparameter tuning was undertaken by a nested k-fold cross-validation procedure,
which is described in detail in the following section.

To implement these machine learning algorithms, open-source R packages were used:
raster 3.0–7 [72], doParallel 1.0.15 [73], Kernlab 0.9–29 [74], DMwR 0.4.1 [75], PBSmapping
2.72.1 [76], e1071 1.7–2 [77], neuralnet 1.44.2 [78], ggplot2 3.3.5 [79] in R 3.6.1 [80].

2.3. Model Evaluation and Metrics

The predictive skill of the machine learning algorithms was evaluated using two ap-
proaches. First, a k-fold cross-validation approach that has been widely used in machine
learning classification [81,82] was applied. In this approach, the data are randomly divided
into k disjointed subsets of equal size. Then, for each combination of k−1 of the k subsets, one
of the k models is trained, and the test statistic for that model is evaluated on the remaining
subset [83,84]. The mean of the test statistics over all k models is called the cross-validation
estimate. In this study, k = 10 so that each subset spanned 2 years of data. The data are
assumed to be independent during the k-fold cross-validation. However, this assumption
may be inappropriate for time series that may be auto-correlated. Thus, the data herein were
further validated by block cross-validation [85–88]. To do this, the data were divided by
chronological order into 10 subsets of 2 years each: 1998–1999, 2000–2001, . . . , 2017–2018.
In one iteration of the cross-validation procedure, the models were trained on the data from
1998–2016 and then tested on data from 2017–2018. This procedure was repeated for all the
2 year blocks.

Four metrics were used to evaluate the performance of the machine learning classifiers
in predicting K. brevis blooms [53,89]. Accuracy measures the overall accuracy of the
prediction (Equation (10)):

A =
TrPos + TrNeg

TrPos + FNeg + TrNeg + FPos
(10)

where TrPos is the number of weeks with blooms predicted correctly (true positives), FNeg
is the number of weeks with blooms predicted to be non-HAB weeks (false negatives),
TrNeg is the number of non-HAB weeks predicted correctly (true negatives), and FPos is
the number of non-HAB weeks predicted to be weeks with HABs (false positives). A is the
measure of all the correctly identified cases. Recall (R) is the ratio of the correctly-predicted
HAB weeks to the total number of the observed HAB weeks (Equation (11)):

R =
TrPos

TrPos + FNeg
(11)

Precision (P) is the ratio of the correctly-predicted HAB weeks to the total number of
the predicted HAB weeks (Equation (12)):

P =
TrPos

TrPos + FPos
(12)

F1 measures the balance between precision and recall (Equation 13):

F1 = 2× R ∗ P
R + P

(13)

Although A is most often used when there are similar amounts of each class, F1 score
is a better metric where there are imbalanced classes. The testing metrics were averaged
for both the k-fold or block validation procedures. To further test the models’ predictions, a
time series of the cross-validation predictions was created.
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In addition to the four metrics, the robustness of each model, such as sparsity, was
examined. The mean number of support vectors (SVs)/relevance vectors (RVs) was calcu-
lated for the SVM and RVM, and the Akaike Information Criterion (AIC) was determined
for the ANN.

2.4. Sensitivity Analysis

In order to determine how environmental factors affect the probability of K. brevis,
Platt scaling [90] was applied. This uses a logistic transformation to convert classifier
predictions into probability distributions over the classes. Platt scaling is ideal for this
study because of its simplicity and the size of the training dataset. First, each machine
learning algorithm was trained on the entire dataset. Platt scaling was then applied to
calculate the probability of K. brevis blooms (Equation (14)):

P(yi = C+1|x) =
1

1 + exp(A f (x) + B)
(14)

where yi is a sample, C+1 is one of the classes, f (x) is the classifier output, and A and B are
scalar constants [91].

2.5. In Silico Experiments

Using the various models, the impacts of different environmental variables on prob-
abilities of K. brevis occurrence were assessed. To do so, each explanatory variable or
variables were varied by 1–2 standard deviations around its mean whereas the other vari-
ables were set to their respective annual mean values. Line plots and contour diagrams of
HAB probability as a function of explanatory variables were created by varying one or two
explanatory variables at a time.

The probability of K. brevis blooms as a function of wind speed components in the
north–south direction (negative for northerly wind) and the east–west direction (negative
for easterly wind) were examined using SVM. To do so, the wind components were
varied 1–2 standard deviations above and below the long-term mean while holding other
factors constant.

The probabilities of K. brevis outbreaks as a function of discharge from the Suwanee,
Hillsborough, Myakka, Peace, and Caloosahatchee Rivers—all of which discharge into
the WFS—were examined using SVM, RVM, and NB. Using the same three models, the
probabilities of blooms for each river as a function of their TN or TP loads were also
estimated based on variations of 1–2 standard deviations from the mean (and setting other
features to the mean).

3. Results
3.1. Overall Model Performance

The predictability of K. brevis blooms over the 21 year time series (1998–2018) was
tested relative to the observed K. brevis cell concentrations along the WFS using all four
machine learning approaches. All models captured the general time series of K. brevis
events, encompassing both prolonged blooms with high cell counts, and periods of only
a short duration with relatively low cell counts, but the RVM model was the most robust
(Figures 3 and 4).
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Figure 3. Comparison of Relevance Vector Machine (RVM) output and observational data of Karenia brevis. (a) Time series
of the observed (black line) and predicted (blue and orange dots) area-averaged K. brevis concentrations from 1998 to 2018.
Cell counts above 5 (log10 cells L−1; dashed line) are herein considered bloom conditions. (b) Snapshots of the observed
K. brevis distribution in selected months. The twenty-one year timespan includes many years with blooms (2002, 2005, 2012,
2018) and without blooms (1998, 2010).

Results from the random oversampling and SMOTE sampling method were similar
for all four approaches (Table 1). According to the block cross-validation, SVM and ANN
achieved significantly higher prediction accuracy (0.62 and 0.61, respectively, from random
oversampling) than RVM and NB (0.55 and 0.47, respectively). In contrast, when comparing
the recall values using the same block cross-validation with random oversampling, NB
had the highest recall (0.72), followed by RVM (0.58), implying that these models correctly
predicted 72% and 58% of the prior K. brevis blooms, respectively, whereas SVM and ANN
had much lower recall values (0.27 and 0.33 respectively). All models predicted a similar
number of false positives, as shown by their precision values ranging between 0.32 and
0.35. The F1 score, the balance between recall and precision, was highest for RVM and NB,
at 0.43 and 0.45 respectively.
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3.2. Role of Wind

Winds differed in years with and without a bloom. During years with blooms, stronger
northerly and westerly winds occurred (Figure 5). Using RVM, the probability of K. brevis
blooms as a function of wind speed components was examined in the north–south di-
rection (negative for northerly wind) and the east–west direction (negative for easterly
wind). Bloom probability was much higher under northerly winds than under southerly
winds (Figure 6). Bloom probability reached a maximum of 0.57 under northerly wind,
whereas strong southerly wind reduced bloom probability to <0.3. Northerly winds drive
coastal upwelling, thereby transporting K. brevis from the offshore waters to coastal waters.
Westerly winds corresponded to higher probability (up to 0.53) of a bloom, compared
with easterly winds, with bloom probability as low as 0.36 for the strongest easterly winds
(Figure 6). Once K. brevis reaches nearshore locations, westerly winds help hold K. brevis
blooms against the shore where they can access nutrient sources from land and rivers.



J. Mar. Sci. Eng. 2021, 9, 999 12 of 21

Table 1. Comparison of the four machine learning approaches applied herein (Support Vector Machine, SVM; Relevance
Vector Machine, RVM; Naïve Bayes, NB; and Artificial Neural Network, ANN), as validated using k-fold cross-validation
and block cross-validation. See text for equations applied. Best value for each metric in each column is in bold.

Model Performance
Metric

k-Fold
Cross-Validation

(Random
Oversampling)

k-Fold
Cross-Validation

(SMOTE)

Block
Cross-Validation

(Random
Oversampling)

Block
Cross-Validation

(SMOTE)

SVM

Accuracy 0.79 0.79 0.62 0.62

Recall 0.63 0.63 0.27 0.26

Precision 0.64 0.65 0.32 0.32

F1 0.64 0.64 0.29 0.29

RVM

Accuracy 0.62 0.76 0.55 0.59

Recall 0.73 0.72 0.58 0.47

Precision 0.42 0.58 0.35 0.35

F1 0.53 0.64 0.43 0.40

NB

Accuracy 0.52 0.54 0.47 0.47

Recall 0.85 0.78 0.72 0.73

Precision 0.37 0.37 0.33 0.32

F1 0.52 0.50 0.45 0.45

ANN

Accuracy 0.74 0.71 0.61 0.60

Recall 0.57 0.56 0.33 0.40

Precision 0.55 0.51 0.34 0.34

F1 0.56 0.53 0.34 0.37
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Figure 6. Probability of Karenia brevis as a function of wind speed and direction, obtained from the
sensitivity analysis using the RVM.

3.3. Role of River Flow and Associated Nutrients

Seasonally, riverine flow typically increases for all rivers in all years during the
summer months, but interannual variability is high (illustrated for the 21 year record for
the Suwanee, Peace, Myakka, and Hillsborough Rivers, Figure 7a). For all rivers, and
across all discharge levels examined, the probability of K. brevis blooms increased with
river flow (Figure 7b).

For all rivers, bloom probability predicted by the NB was always greater than that
predicted by the RVM, which was always larger than that predicted by the SVM (Figure 7b).
This result can be explained by Table 1: the NB had the highest recall value; the RVM
ranked second; the SVM had the lowest value. The ANN was excluded from the sensitivity
analysis because the ANN yields probability predictions that are either very close to 0
(<0.01) or 1 (>0.99. This presents numerical instability issues when computing the weights
of the logistic function (Equation (14)) in Platt’s scaling, yielding ANN probability curves
with discontinuous jumps that are either very close to 0 (<0.01) or 1 (>0.99), like the initial
ANN predictions.

As discharge changed, using RVM as the example, the slope in bloom probability
was highest with the Hillsborough River, with low discharge yielding a 0.20 probability
in blooms, increasing to 0.55 with high discharge (Figure 7b). Increases in discharge
from the Peace and Suwanee Rivers also increased bloom probability substantially, from
0.33–0.52 and 0.23–0.54, respectively (with RVM as the example), across the range of typical
flows. Changes in discharge from the Myakka River yielded probabilities that changed
from 0.34 to 0.55. Across all discharge levels, bloom probability was consistently higher
(0.49–0.51 with RVM) with increased Caloosahatchee River discharge than for the other
rivers examined, and it increased linearly as river discharge increased. The Caloosahatchee
River has the highest discharge of the rivers examined, and it transports the highest amount
of nutrients.

The composition of the nutrients discharged by the different rivers also varied and
accordingly the probability of blooms varied for their different nutrient loads (Figure 7c,d).
Applying the three models SVM, RVM, and NB, with increasing TN, the largest increase in
bloom probability was found for the Myakka River, whereas smaller increases were found
for the Peace and Caloosahatchee Rivers (Figure 7c). For the Hillsborough River, K. brevis
probability as a function of the TN loads resembles a parabolic function. For TP, increases in
probability were seen for the Peace and Caloosahatchee Rivers, but a parabolic relationship
was noted for the Hillsborough and Myakka Rivers (Figure 7d). As nutrient loads increase,
it is possible that K. brevis may be either outcompeted by a different species or and/or
become limited by a different growth factor. However, there were some differences among
the three models. For example, the bloom probability versus the Peace River TP load had
a slope that was less steep in the NB model than in the RVM and SVM. Although the
probability increased slightly with TN in the Caloosahatchee River in the NB and SVM, it
decreased in the SVM.
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Figure 7. (a) Annual mean riverine flow for rivers indicated for the 21 year time series. (b) Probability of K. brevis blooms as
a function of riverine discharge. (c,d) Probability of K. brevis blooms as a function of total nitrogen loading (TN) and total
phosphorous loading (TP). Probabilities were obtained from three machine learning models: RVM (thick green lines); NB
(dotted blue lines); SVM (dashed red lines).

By comparing TN and TP discharge from different rivers, it can be seen that large
reductions in both nutrients are needed from multiple sources to substantially reduce
the frequency of K. brevis blooms (Figure 8), based on the results from the RVM. These
comparisons, based on variations of 1–2 standard deviations from the mean (and setting
other features to the mean), illustrate the magnitude of reductions necessary to reduce the
probability of blooms from >0.6 to <0.2.

3.4. Role of Sea Surface Height

Sea surface height difference was chosen as one of the explanatory variables in our
machine learning algorithms because previous studies [48] have related this variable to
the position of the Loop Current, and the associated temperature and degree of upwelling.
Results for the RVM model were nearly identical with or without this explanatory variable
(Figure 9) and, given this outcome, this factor was not tested with the other models. This
may be due to the fact that the Loop Current is inhibited from penetrating the WFS due to
the sloping typography; shelf currents are controlled to a larger extent by local winds [92].
Nevertheless, for 1998, 2002, 2009, 2010, and 2013, when the Loop Current was in its
southern position, the RVM model generally had a much lower precision value (0.36, 0.42,
0.00, 0.00, 0.25, and an average of 0.21) versus 0.35 for all years. This suggests other factors
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not considered in the explanatory variables may be needed to improve bloom prediction
for those years.
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4. Discussion

Machine learning provides powerful approaches for predicting HAB occurrences and
testing their potential change under different conditions. The flexibility of these tools and
ability to find data-driven solutions when mechanistic relationships are yet unknown or
hard to parameterize are particularly important for advancing research on factors that
result in toxin-producing blooms. Prior modeling of HABs accommodating nonlinearity
of relationships and non-normality of distributions has been undertaken by statistical
regression models, and the power of machine learning techniques is beginning to be
recognized [39]. Machine learning has become a powerful tool in water quality assessment,
from freshwater to marine waters [93–95].

Models, however imperfect, can be useful for testing the strength of particular factors
or variables on outcomes. In silico experiments in which nutrient sources are turned
on or off, or climate variables altered, provide clear clues regarding the importance of
such factors both for present and future conditions [26,27]. Such in silico experiments
are also insightful regarding the potential magnitude of impacts of nutrient reductions if
undertaken by management.

Models may yield either false positives (indicating blooms or conditions for blooms
when they do not occur) or false negatives (indicating no bloom when in fact they do
occur). Both can be problematic in terms of protecting human health and economies. False
positives may be preferable if the goal is to protect human health—better to be “safe than
sorry”—but false positives can also be more expensive economically [31]. For example, a
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fishery may be closed when it was not necessary to do so. False negatives are not protective
of human or ecological health.

In this study, four different machine learning classifiers were used to predict the
likelihood of K. brevis blooms between 1998 and 2018. Comparing the 20 year monitoring
dataset of the abundance of this dinoflagellate using all algorithms, RVM and NB were
found to have better skills in bloom prediction than the two other approaches. All models
were comparable in how frequently false negatives were reported. Because the number
of weeks with blooms was about 42% of the number of non-bloom weeks, it required the
classifiers to learn from an imbalanced dataset. This challenge was resolved by two different
methods that oversample the minority class: random oversampling and generation of
synthetic data using SMOTE. The predictive skills were very similar between the two data
sampling methods (Table 1). This result is perhaps not surprising because the ratio of the
samples in the minority to the samples in the majority class was only 1:2.4, in comparison
to models in which the class imbalance reached 1:10 or 1:100 [53].

Another feasible alternative machine learning model is that of the random forest. This
approach often outperforms other models and has the option of ranking variables by their
individual importance. However, in the current data set for which there are ~1000 data
points, any resulting decision tree would be based only on 10s−100s of data points. Thus,
the approaches used herein were more suitable to the size of the data set.

Both k-fold and block cross-validation methods were used to evaluate the predic-
tive skills of the machine learning classifiers. Although the SVM achieved good scores
(recall = 0.63, precision = 0.64, and F1 = 0.64 using random oversampling) during the
k-fold cross-validation, its performance deteriorated significantly during the block cross-
validation (recall = 0.27, precision = 0.32, and F1 = 0.29) (Table 1). A similar deterioration
was seen in the ANN between k-fold and block cross-validation methods. When trained
using the random oversampling approach and tested with the k-fold cross-validation pro-
cedure, the SVM used 533 support vectors and the ANN had a high Akaike Information
Criterion score of 1814. It is possible that these two algorithms overfitted the training data
and their predictive skills deteriorated when tested on completely independent data, as un-
dertaken in the block cross-validation analysis. In contrast, the RVM had only 19 relevance
vectors, and NB was a simple probabilistic classifier, thus producing more robust results.
The accuracy, recall, precision, and F1 scores of RVM and NB remained higher, regardless
of the cross-validation methods.

Blooms of K. brevis occur almost annually in the eastern Gulf of Mexico, typically
initiating in early fall, but varying in intensity and duration. The bloom of 2017–2019 was
among the largest and most expensive in recent history. It caused the deaths of hundreds
of tons of fish, hundreds of manatees, dolphins, and sea turtles, in addition to many cases
of respiratory distress [13]. Fisheries closures, and revenue lost by local businesses, also
had economic impacts in the tens to hundreds of millions of dollars [11]. Understanding
the links between physical controls (upwelling, river flow), nutrient inputs, and extreme
weather events has been a high priority in order to make long-term predictions to protect
environmental and human health [14,18,34]. The results reported herein confirm that wind
direction, river flow, and nutrient load are important explanatory variables with regard
to K. brevis probabilities. Although sea surface height (as a proxy for the Loop Current)
did not contribute to improved forecasts, the increase in false positives for select years
(lower precision values) suggests that the height values alone do not capture the effect of
this current adequately, i.e., it was not a sensitive proxy.

Using a convolutional NN approach, Hill et al. [46] achieved high accuracy in detecting
blooms of K. brevis. There are several differences between the methodology applied herein
and the analysis of Hill et al. [46]. The study of Hill et al. [46] used satellite remote sensing
of chlorophyll a as a proxy to detect K. brevis, whereas direct cell counts were used here.
Moreover, Hill et al. [46] did not explore the role of wind speed, river flow, or nutrient loads.
These results are complementary and show the promise of machine learning approaches
not only in modeling various aspects of K. brevis blooms, but of HAB events more generally.
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Although there have been debates about the extent to which anthropogenic nutrients
fuel K. brevis blooms [10,14], and references therein], there is no doubt that Florida’s con-
tinuing population growth has accelerated eutrophication. Florida is working to establish
nutrient reduction targets to mitigate water quality problems in the water bodies. With
Florida’s continuing population growth and its coastal development and dependence on
tourism, more people are exposed to K. brevis and its toxins than in previous decades, and
the prolonged duration of recent blooms is also increasing the period of exposure when
blooms do occur [14]. Blooms, which traditionally occur from the late summer until late
winter, have been sustained throughout the summer months in recent years, raising impor-
tant questions about the interplay of physical controls and biological responses, including
changing temperature conditions. The nutritional pathways, and sources of nutrients
supporting K. brevis blooms, are complex [14,21,24,25]. The fact that nutrient loads have
increased is, in itself, an insufficient explanation for the expansion in K. brevis blooms. The
right nutrients are required at the right time to create conditions conducive for these blooms
to form [7]. Changes in flow, such as that due to hurricanes or intensive wet weather, bring
new nutrients that can help to support blooms. The statistical analysis by Maze et al. [48]
indicates that there are significant differences in the Peace and Caloosahatchee River flows
between periods of large blooms and periods without blooms. It is important to note that
flows from the Caloosahatchee are actively managed and regulated—to reduce potential
flooding in the Lake Okeechobee region—whereas those of the Peace are not. The machine
learning algorithms used here illustrated strong relationships between river flow and
blooms. Strong river flow that occurs following hurricanes, regardless of whether those
flows are natural or enhanced by active management, especially when these flows follow
extended droughts, deliver substantial nutrient loads.

Air temperatures over Eastern North America (including Florida) are expected to
increase ~1.5 ◦C by 2050 and 3–4 ◦C by 2100 (relative to 2000), according to recent climate
projections [96]. Additionally, rainfall over Florida is projected to decrease by 20–30%
during the summer but to increase by 10–20% during the fall–winter, which is the season
during which K. brevis blooms typically occur. This work underscores the important interac-
tive roles of nutrient pollution and river flow in the increased frequency of K. brevis blooms
in Florida. Due to climate change and the predicted increase in extreme precipitation events
in a warming climate [97–99], it is expected that HABs will occur more frequently in the
future, in Florida and elsewhere, unless substantial reductions in TN and TP land-based
use and loading in the major rivers are achieved.

5. Conclusions

In conclusion, four new machine learning models were developed for the WFS and
explored with regard to wind direction, temperature, river flow, nutrient load, and sea
surface height as explanatory variables in predicting K. brevis blooms. The models had
different strengths due to the differing degrees of complexity of the models, and they
responded differently to the cross-validation procedures used. Overall, the RVM and
NB models performed the best in predicting past events. By manipulating the range of
explanatory variables, insight into the strength of their impact on blooms was obtained.
These findings highlight that not only are reductions in both N and P necessary to reduce
blooms, but reductions from multiple rivers are more effective than reductions from a single
river. These models can be helpful in exploring the most effective combinations of nutrient
reductions. Because river drainage basins are large, a 10–20% increase in fall–winter rainfall
will translate into increases in discharges of multiple rivers with their combined higher
nutrient loads during the K. brevis bloom period. This implies that to control blooms
through nutrient reductions, greater reductions will be required than under present day
flow conditions.
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